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SUMMARY 

Metagenomic data were generated using Oxford Nanopore Technologies (ONT) platform for 396 
sheep rumen fluid samples. Taxonomic and gene functional abundance matrices were constructed to 
develop predictive models for estimating methane emission phenotypes based on methane 
concentration from portable accumulation chambers (PAC). The greatest microbiability (m2; 
proportion of phenotypic variation explained by the microbiome relationship matrices) was 
generated using Clusters of Orthologous Groups (COGs) functional annotations of the reads (𝑚𝑚2 = 
0.92). Correlations between the predicted phenotypes and the PAC phenotypes in a 5-fold cross-
validation ranged from 0.48 to 0.51. These results indicate that metagenomic predictions could be 
implemented as a proxy methane phenotype in sheep and could be used to increase the feasible 
reference population size in genomic predictions for methane using multi-trait models. 

 
INTRODUCTION 

Methane emission from ruminant livestock is one of the main contributors to greenhouse gas 
production from the agricultural sector. Enteric methane emission levels can be predicted from the 
variation in rumen microbiota composition and metabolic activities (Ross and Hayes 2022). Recent 
advances in long-read sequencing technology have enhanced recognition of genetic elements, 
taxonomic identification and functional annotation in metagenomics (Kim et al. 2024). We applied 
long-read metagenomic sequencing of rumen samples to identify which microbial taxonomic or 
functional classification approach best captures methane phenotypic variation and compared 
prediction accuracies across these different classification methods. 

 
MATERIALS AND METHODS  

Collection of methane emission data and associated parameters. Methane emissions were 
measured using portable accumulation chambers (PAC) for 50 minutes per animal in 396 lambs aged 
5.75 ± 0.12 months. The lambs were sourced from the 2023 lambing season of MLA resource flock 
at Kirby (Armidale, NSW). Methane concentrations were measured in parts per million (ppm) using 
an Eagle2 Gas Monitor (RKI Instruments). The recorded gas concentrations were corrected using 
CH4 ppm × standard temperature and pressure. Associated fixed effects were measured 
simultaneously with CH4 phenotype measurements, including body weight (kg), sampling date, and 
time off feed, which accounts for key potential confounding effects. 

Metagenomic library preparation, long-read sequencing and basecalling. For metagenomic 
sequencing, libraries of 396 samples were prepared using the Oxford Nanopore Native Barcoding 
11Kit (SQK-NBD114.96). Following end preparation and clean-up, DNA fragments were ligated 
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with unique barcodes and sequencing adapters, then pooled for sequencing on the PromethION 
platform (ONT). Dorado basecaller (v0.7.0) with the “Super Accuracy” model v4.3.0 generated a 
total of 4TB of long-read sequencing data from the raw dataset. Reads with an average Phred quality 
score below 10 and length < 200 bp were removed from the dataset. 

Taxonomy and functional identification. SqueezeMeta v1.6.3 (Tamames and Puente-Sánchez 
2018), was used to assign individual reads to taxa at the levels of Phylum to Species, as well as 
classify the function of the genes included in each read using both the EggNOG (Huerta-Cepas et 
al., 2019) and KEGG (Kanehisa and Goto 2000) databases. Within SqueezeMeta, Prodigal v2.6.3 
was used for protein-coding gene prediction, DIAMOND v2.1 for protein alignment against NCBI 
non-redundant protein databases, and EggNOG (v5.0) and KEGG (v110) databases for metabolic 
pathway reconstruction. Taxa assigned to the kingdoms of Bacteria, Archaea, and Eukarya were 
retained for microbially abundant matrices, with an average of 65.7% of sequence counts not 
assigned to these taxonomic classifications being removed. Eight distinct abundance matrices were 
constructed for microbial features composition: six for taxonomic levels (Phylum to Species) and 
two for functional annotations marked as KEGG and COGs (Clusters of Orthologous Groups). 

Statistical model definition. Low-abundance microbial taxa and pathways (count < 10) were 
removed. Counts were normalised to relative abundances (percentages) per sample, summing to 
100%. Both methane emissions (ppm) and microbial abundances were scaled to z-scores for 
modeling. ASReml-R 4.2 (Butler and Cullis 2023) was used to fit a BLUP-based mixed linear 
model:  

𝑦𝑦 =  𝑋𝑋𝑋𝑋 +  𝑍𝑍𝑍𝑍 +  𝑒𝑒 
where, 𝑦𝑦 was the vector of phenotypic values (CH4 emissions). 𝑋𝑋 and 𝑍𝑍 were design matrices linking 
observations to fixed and random effects, respectively. The fixed effects, 𝑏𝑏 included linear cofactors 
such as weight and time off feed prior to entering the PAC. The microbiome random effects 𝑢𝑢 were 
assumed to follow a multivariate normal distribution as 𝑢𝑢  ∼  N (0, Gσ𝑚𝑚2 ). The 𝐺𝐺 was a variance-
covariance (microbial relationship) matrix derived from the standardised taxonomic or functional 
abundance matrix M,  

𝐺𝐺 =  𝑀𝑀𝑀𝑀′/𝑛𝑛  
where 𝑀𝑀 was the dimensions 𝑖𝑖 ×  𝑛𝑛 standardised taxonomic or functional abundance matrix, 𝑛𝑛 was 
the number of features (taxa or functional pathways) and 𝑖𝑖 was the number of samples (Ross and 
Hayes 2022). This matrix represents pairwise covariances among samples based on their microbial 
abundance profiles. The variance component σ𝑚𝑚2  associated with the 𝐺𝐺 quantifies the proportion of 
total variation explained by composition of microbiome features. The microbiome variance 
component σ𝑚𝑚2  (𝑉𝑉𝑚𝑚), estimated to be using Residual Maximum Likelihood (REML), represented the 
proportion of CH4 emission variation attributed to the microbiome abundance matrix. The residuals 
were assumed to be normally distributed with variance σ𝑒𝑒2. Environmental variance σ𝑒𝑒2 (𝑉𝑉𝑒𝑒), obtained 
from the BLUP model, represented the random error effects after accounting for weight, batch-level 
and microbial abundance effects. The proportion of the phenotypic variance explained by the 
microbial component (microbiability 𝑚𝑚2), was calculated as the ratio of linear microbiome variance 
to total variance: 𝑚𝑚2 = 𝑉𝑉𝑚𝑚 /( 𝑉𝑉𝑚𝑚  +  𝑉𝑉𝑒𝑒  ), indicating the predictive ability of microbial 
characteristics by using abundances matrixes for CH4 emissions. 

Three distinct cross-validation strategies were performed to assess predictive microbial ability. 
These included 2-fold and 5-fold random partitioning with 20 iterations each, and a leave-one-batch-
out approach testing generalisability across different sampling conditions. For the latter, one 
validation batch from 42 total batches (structured across 6 days with 7 different time off feed 
intervals) served as the testing set. The accuracy (𝑟𝑟) was calculated as the average Pearson’s 
correlation between predicted and observed methane phenotypes across all folds: 𝑟𝑟 =
1
𝑘𝑘
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦𝑖𝑖 , 𝑦̑𝑦𝑖𝑖). 𝑦𝑦𝑖𝑖  represented the vector of methane phenotypes, and 𝑦̑𝑦𝑖𝑖  were the corresponding 
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predicted phenotype value. The factor 𝑘𝑘 represented the number of folds in cross-validation. To 
account for microbiability (𝑚𝑚2), the corrected accuracy was also reported as 𝑟𝑟

�𝑚𝑚2 . All accuracy 

values were reported as a means with standard errors. 
 
RESULTS AND DISCUSSION  

The CH4 concentrations, which were corrected for standard temperature and pressure, ranged 
from 123.21 to 1415.87 ppm. The mean (±SD) concentration was 647.69 (±238.67) ppm, with a 
median of 624.92 ppm. The methane yield coefficient of variation between animals was 36.85%.  

Filtering removed 27.27% (±5.73%) of low-quality reads. The number of sequencing reads was 
1.68×106 (±1.08×106), with an average read length of 642.79 (±221.63) bp, a read length N50 of 
1013.74 (±1012.71) bp, and an average sequencing accuracy of 98.06% (±0.25%). 

The taxonomic and functional abundance matrices derived from long-read metagenomic analysis 
were quantified at multiple classification levels, with the feature counts summarised in Table 1. 
Notably, all taxonomic levels from long-read metagenomic explained more of the variance than 
short-read approaches in other studies (Xie et al. 2021). The microbiability (𝑚𝑚²) (Table 1) increased 
from phylum (0.27) to genus/species level (0.65), with stable standard errors (± 0.2) as the number 
of features (i.e. columns in the count matrix) increased. Functional abundance matrices had higher 
 𝑚𝑚2 values compared to taxonomic abundance matrices. The microbiability for methane emission in 
this study showed more variance explained than previous approaches. Earlier Bayesian modeling 
studies reported lower microbial effects (comparable to 𝑚𝑚²): average of 0.07 based on OTUs 
(Operational Taxonomic Units) taxonomic groups (Zhang et al. 2020), and <0.33 based on 
taxonomic abundance from long-read metagenomic data (Marcos et al. 2024).  
 
Table 1. Microbiability (m2) and variance components of microbiome data 
 

Level 𝒏𝒏 𝒎𝒎𝟐𝟐 𝑽𝑽𝒎𝒎 ± SD 𝑽𝑽𝒆𝒆 ± SD MSE 
Phylum 242 0.27  0.13 ± 0.04 0.35 ± 0.03 0.73 
Class 655 0.45  0.23 ± 0.05 0.28 ± 0.03 0.60 
Order 1174 0.51  0.25 ± 0.06 0.24 ± 0.04 0.54 
Family 2008 0.55  0.26 ± 0.06 0.21 ± 0.04 0.52 
Genus 3042 0.65  0.30 ± 0.06 0.16 ± 0.04 0.45 
Species 3042 0.65  0.30 ± 0.06 0.16 ± 0.04 0.45 
KEGG 9591 0.80  0.48 ± 0.10 0.12 ± 0.04 0.39 
COGs 22873 0.92  0.49 ± 0.08 0.04 ± 0.05 0.34 

MSE (Mean Squared Error) = 1
𝑘𝑘
∑(𝑦̑𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)

2; SD: Standard Deviation. 
 

Cross-validation showed robustness of corrected accuracy at 2-fold (range: 0.45-0.51) and 5-fold 
(range: 0.48-0.51) across all taxonomic and functional levels (Table 2). A previous study in sheep 
using covariance matrices based on metabolomic matrices and rumen microbial OTUs matrices in 
sheep revealed average accuracy (𝑟𝑟) below 0.4 (Ross et al. 2020), although their sample size was 
much smaller. However, the leave-one-batch-out validation accuracy was lower (range: 0.18-0.33), 
potentially attributed to either large variation in the fixed effects (weight and time off feed) with 
unknown environmental conditions or the reduced test sample size which introduced unknown 
predictive errors. After correcting accuracies by microbiability (𝑚𝑚2), leave-one-batch-out (42-Fold) 
accuracy ranged from 0.32 to 0.39. The correlation between microbiome-predicted methane and 
PAC methane was comparable to the correlation between repeated PAC measurements, which 
ranged from 0.51 to 0.90 in sheep across 7 days (O’Connor et al. 2021).  
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Table 2. Accuracy estimation of cross-validation across taxonomic and functional levels  
 

 2-Fold 5-Fold 42-Fold 
 𝒓𝒓 𝒓𝒓/𝒎𝒎 𝒓𝒓 𝒓𝒓/𝒎𝒎 𝒓𝒓 𝒓𝒓/𝒎𝒎 
Phylum 0.42 ± 0.05 0.49 ± 0.06 0.44 ± 0.03 0.49 ± 0.03 0.18 ± 0.06 0.34 ± 0.11 
Class 0.41 ± 0.05 0.46 ± 0.04 0.43 ± 0.03 0.48 ± 0.03 0.23 ± 0.05 0.35 ± 0.08 
Order 0.44 ± 0.04 0.51 ± 0.03 0.45 ± 0.05 0.51 ± 0.05 0.27 ± 0.06 0.39 ± 0.08 
Family 0.40 ± 0.01 0.45 ± 0.05 0.44 ± 0.03 0.50 ± 0.03 0.26 ± 0.06 0.35 ± 0.08 
Genus 0.41 ± 0.00 0.46 ± 0.02 0.44 ± 0.04 0.49 ± 0.04 0.26 ± 0.06 0.32 ± 0.08 
Species 0.43 ± 0.01 0.49 ± 0.02 0.45 ± 0.04 0.51 ± 0.05 0.26 ± 0.06 0.32 ± 0.08 
KEGG 0.42 ± 0.04 0.47 ± 0.04 0.45 ± 0.03 0.51 ± 0.04 0.32 ± 0.05 0.36 ± 0.06 
COGs 0.42 ± 0.00 0.48 ± 0.04 0.42 ± 0.02 0.48 ± 0.03 0.33 ± 0.06 0.35 ± 0.06 

𝑟𝑟: Accuracy; 𝑟𝑟/𝑚𝑚: Corrected Accuracy; All values are mean ± standard error. 
 
CONCLUSIONS  

Long-read metagenomic data analysis and appropriate model selection improved the prediction 
accuracy of methane emission phenotypes in this study. Variation explained by the microbiome 
relationship matrix was highest for the COGs functional categorisation. Higher prediction accuracy 
was achieved by including within cohort methane measurements in the reference set. 
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